
Session State

Objectives

 Identify and discuss some complicating factors in enterprise

information systems

 Concurrency

 Session State

 Integrating functional and platform services

 Summarize some key concepts

 Point to design patterns to address these concerns

 Read Fowler and other sources for details

Stateless and Stateful

 Problem: How to store the data that’s used within a business
transaction (user or client) that is not yet ready to be committed
to the shared database of record?

 Stateless: An object does not retain state (values of its attributes)
between method requests
 A stateful server object must keep its state (and other

resources) waiting between requests
 A stateless server object can process other requests from other

sessions
 Pool objects, so need fewer objects to handle more user

sessions
 Fewer objects to handle idle, slow users

 More scalable to handle many concurrent users
 Consistent with HTTP as a stateless protocol

Client Interactions are Inherently Stateful

 Consider a shopping cart in an on-line purchasing application

 Many (stateless) HTTP requests as the customer browses the

catalog, checks out, manages their account, etc.

 Session state during a user (“business”) transaction is isolated

from other user sessions

 Shared state across sessions must be recorded to “data of record”

– long-term persistent and shared data committed to a database

 Session state may have ACID properties as do system transactions

 Consistency and isolation are key challenges

 Some session data is not necessarily “stateful”

 May cache data for convenience and performance

Ways to Store Session State

 Three options (with some blurring between them)

 Client Session State pattern
 Server Session State pattern
 Database Session State pattern

Read Fowler’s discussions to guide your design trade-off decisions

Ways to Store Session State

 Client Session State pattern: Store data on
client
 Encode in URL, use cookies, use hidden fields on a

web form, use objects in a rich client application

KVPs+”gibberish”

Ways to Store Session State

 Server Session State pattern
 Hold data in a shared object, in a container-

provided session dictionary, in a shared file system,
etc.

 Indexed and accessed using a session ID

Ways to Store Session State

 Database Session State pattern
 Map session data to data tables and store in a

database

An example with Ajax

Excerpts from: Managing State for Ajax-Driven Web Components - Ousterhout and Stratmann

An example with Ajax
 Reminders: stores the state information on the browser

with the page and returns the information to the server in

subsequent Ajax requests.

 Cons:

 Overhead (depends on granularity)

 Security (can use additional keys)

 Page Properties: stores the state information on the server

as part of the session.

 Cons:

 Crash implies need for persistence after each request (<Overhead)

 Garbage collection (when to delete old page properties)

Conclusions

 Session Management is an important concern for enterprise

information systems

 There are design patterns to address these.

 Consider how your enterprise information system can leverage

persistence of session information.

 Make sure to understand what options are afforded to you in

the chosen platform.

 Evaluate not only the why but the when session data is used.

 Understand the underlying choices made by the framework.

Activity: Session State Research
Report a brief list (URLs included) of Session State based tutorials

or resources that are most applicable to the mechanism your team is

planning on using (or is currently using) to maintain session data in

your assigned component(s).

Write a brief description on your team’s approach to Session state

management. Include:

 What does the approach require?

 Why are you using/choosing to use this approach?

 What are the PROS/CONS?

 What are the most important actions required by your team to support

your approach under the class-wide ERP? (identify any dependencies

or specific transactions/use-cases where this will be required)

